

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5317-5320

2-(3-Amino-3-deoxy-β-D-xylofuranosyl)thiazole-4-carboxamide: A new tiazofurin analogue with potent antitumour activity

Mirjana Popsavin,^{a,*} Saša Spaić,^a Miloš Svirčev,^a Vesna Kojić,^b Gordana Bogdanović^b and Velimir Popsavin^a

^aDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, Trg D. Obradovića 3, 21000 Novi Sad, Serbia ^bInstitute of Oncology Sremska Kamenica, Institutski put 4, 21204 Sremska Kamenica, Serbia

Received 17 July 2006; revised 27 July 2006; accepted 27 July 2006

Abstract—A new tiazofurin analogue, 2-(3-amino-3-deoxy-β-D-xylofuranosyl)thiazole-4-carboxamide (3), was synthesized starting from D-glucose and evaluated for its in vitro antiproliferative activity against a panel of human tumour cell lines. Compound 3 exhibited the most powerful cytotoxicity against K562 cells, being approximately 100-fold more potent than tiazofurin. This analogue was also active against Jurkat, HT-29 and HeLa malignant cells, with respective IC₅₀ values being ca. 2-, 27- and 17-fold lower than those observed for tiazofurin. Remarkably, compound 3 did not exhibit any significant cytotoxicity towards normal foetal lung MRC-5 cell line.

© 2006 Elsevier Ltd. All rights reserved.

Tiazofurin (2-β-D-ribofuranosylthiazole-4-carboxamide; NSC 286193; 1, Fig. 1), a synthetic nucleoside analogue first described in 1977, is a potent inhibitor of inosine 5'-monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of the de novo guanine nucleotide synthesis.² In 1982 it was reported that 1 represents a high-priority antitumour agent candidate for clinical trials with potential importance for treatment of lung tumours and metastases.³ Since that time, this compound has been the subject of numerous biological studies^{4,5} and it has been recently approved as an orphan-drug for treatment of chronic myelogenous leukaemia in accelerated phase or blast crisis. In phase I/II clinical trials, tiazofurin has shown a significant reduction in leukaemic cell burden in acute myelogenous leukaemia patients.⁶ Despite the efficacy achieved in the clinical trials of tiazofurin, lack of specificity and occasional neuro- and cardiovascular toxicity remain a problem in its clinical use. ^{4a,7} To improve its biological properties, many analogues of 1 have been prepared, including a number of those with variations in the furanose ring.8 However, none of the reported examples have shown favourable biological effects. 9 As a

Keywords: 2,5-Anhydro sugars; C-Nucleosides; Antitumour agents; Epoxide ring opening; Tiazofurin analogues; Thiazoles.

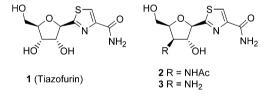


Figure 1. Tiazofurin (1) and analogues 2 and 3.

part of our ongoing project in the synthesis of new C-nucleosides as potential antitumour agents from 2,5-anhydro sugars, 10-14 we have recently reported on the synthesis of several tiazofurin analogues with modified sugar segments that showed increased antitumour activities with respect to the lead compound 1.12-14 Notable among them is 2-(3-acetamido-3-deoxy-β-Dxylofuranosyl)thiazole-4-carboxamide (2), the first biologically active tiazofurin analogue lacking the ribofuranosyl moiety. Compound 2 showed remarkable antiproliferative activity against K562 cells, being over 40-fold more potent than tiazofurin, but was devoid of any significant cytotoxicity towards the normal MRC-5 cell line.¹² Based upon these findings, but also bearing in mind that certain amino-sugar nucleosides possess antiviral and anticancer activities, 15,16 it was of interest to prepare the D-xylo-tiazofurin analogue 3 with a free amino group at the C-3' position, in order to compare its antiproliferative activity with that observed for both lead compounds 1 and 2.

^{*}Corresponding author. Tel.: +381 21 485 27 68; fax: +381 21 454 065; e-mail: mpopsavin@ih.ns.ac.yu

The synthesis of 3 is presented in Schemes 1 and 2. The 2,5-anhydro-p-glucose derivative 4, readily available from D-glucose, 17 was used as a starting material in this work. Treatment of 4 with potassium benzoate in N,N-dimethylformamide afforded the epoxide 5, through a sequential 3,4-anhydro ring closure—primary mesyloxy group displacement process. Reaction of 5 with sodium azide in dimethyl sulfoxide yielded a mixture of the corresponding 3- and 4-azido derivatives (not shown in the reaction scheme), which could not be separated by chromatographic methods due to their close structural similarity. Therefore, the crude mixture of regioisomers was subsequently treated with benzoyl chloride in pyridine to produce the corresponding O-benzoyl derivatives 6 and 7, which were readily separated by column chromatography. Eluted first was the 4-azido-4-deoxy derivative 6 (23% from 5), with physical and spectral data in full agreement with those reported in our previous paper. 11 Eluted second was the minor product 7, which was isolated in 16% overall yield with respect to the epoxide 5. The intermediate 6 was previously prepared starting from 4 in 21.5% overall yield in five synthetic steps. 11

The procedure for preparation of 6 developed in the present work resulted in somewhat lower overall yield (15.4% from 4), but it was carried out through a three-step sequence that provided a faster access to the intermediate.

In the next step, we have focused on the ring opening of epoxide 5 by Me₃SiN₃/BF₃·OEt₂. This reagent system sometimes gives a different regioselectivity compared to NaN₃ in DMF, as observed recently in the ring opening reaction of benzyl 2-acetamido-3,4-anhydro-2,6dideoxy-α-L-talopyranoside. 18 However, it has been shown that the reaction of 5 with Me₃SiN₃/BF₃·OEt₂ in CH₂Cl₂ (rt, 24 h) was not so straightforward and afforded a mixture of 8a and 9a. The crude reaction mixture was not purified but was treated with benzoyl chloride in pyridine to give the 6-azido derivative 8 (34%) as the major product, accompanied by the tri-O-benzovl derivative 9 (16%). Both rearranged products 8a and 9a were formed by the migration of the benzovloxy group via a regioselective cleavage of oxirane ring at the C-4 position. The stereoselectivity in the case of the formation of 2,5-anhydro-D-gulose systems 8a and

Scheme 1. Reagents and conditions: (a) KOBz, DMF, 100 °C, 8 h, 67%; (b) i—NaN₃, DMSO, 108–112 °C, 26 h, ii—BzCl, Py, rt, 24 h, 23% of 6, 16% of 7; (c) Me₃SiN₃, BF₃·OEt₂, CH₂Cl₂, rt, 24 h; (d) BzCl, Py, rt, 24 h, 34% of 8, 16% of 9.

Scheme 2. Reagents and conditions: (a) H₂, 10% Pd/C, CHCl₃ (cat.), EtOH, rt, 24 h; (b) TFAA, Py, CH₂Cl₂, -10 °C, 0.5 h, 4 °C, 72 h, 62% from **6**; (c) 4:1 TFA-6 M HCl, 4 °C, 72 h; (d) NH₂OH·HCl, NaOAc, EtOH, rt, 2 h, 33% from **11**; (e) MsCl, Py, -18 °C, 144 h, then rt 1 h, 59%; (f) H₂S, Py, rt, 4 h, 99%; (g) BrCH₂COCO₂Et, EtOH, 80 °C, 50 min, 32%; (h) NH₃, MeOH, rt, 8 days, 69%.

Table 1. In vitro cytotoxicity of 1, 2 and 3

Compounds	IC ₅₀ ^a (μM)				
	K562	Jurkat	HT-29	HeLa	MRC-5
1	5.29 (0.25)	0.14 (0.006)	1.01 (0.002)	4.76 (0.054)	0.85 (0.01)
2	$0.095^{b} (0.003)$	0.45 (0.01)	$1.0^{b} (0.02)$	>100 (1.56)	89.70 ^b (0.29)
3	0.052 (0.001)	0.06 (0.002)	0.037 (0.002)	0.28 (0.01)	>100 (2.61)

^a IC₅₀ is the concentration of compound required to inhibit the cell growth by 50% compared to an untreated control. Values are means of three independent experiments, standard deviation is given in parentheses.

^b Results taken from Ref. 11.

9a arises from the trapping of the cyclic oxonium ion 5a, derived from neighbouring group participation of the 6-benzoyloxy group in 5, by azide anion or water.

Catalytic reduction of 6 over 10% Pd/C, according to the procedure developed by Secrist and Logue, ¹⁹ gave the corresponding amine hydrochloride 10. Treatment of crude 10 with trifluoroacetic anhydride in pyridine gave the expected trifluoroacetamido derivative 11 in 62% yield. Hydrolytic removal of the dioxolane protection in 11 was achieved with a mixture of trifluoroacetic acid and 6 M hydrochloric acid at +4 °C. The resulting unstable aldehyde 12 was not purified, but was rather immediately treated with hydroxylamine hydrochloride to yield the corresponding oxime 13 as a 5:1 mixture of the corresponding E- and Z-isomers. The mixture was not separated (except for the characterisation purpose), but was rather further treated with mesyl chloride in pyridine to give a 59% yield of the corresponding nitrile 14. Treatment of 14 with hydrogen sulfide in dry pyridine gave a quantitative yield of the corresponding thioamide 15. The final conversion of the intermediate 15 into the target Cnucleoside 3 was achieved by using a modified Hantzsch thiazole synthesis.²⁰ Accordingly, treatment of 15 with ethyl bromopyruvate in refluxing ethanol gave the required thiazole 16, which upon final exposure to the saturated solution of ammonia in dry methanol provided the target tiazofurin analogue 3²¹ in 69% yield.

The newly synthesized tiazofurin analogue **3** was evaluated for its antiproliferative activity against human myelogenous leukaemia K562, Jurkat T cell leukaemia, colon adenocarcinoma HT-29, cervix carcinoma HeLa and normal foetal lung fibroblasts, MRC-5. In vitro cytotoxicity was evaluated after 24-h cell treatment by the MTT assay.²² The results, including the data for the reference compounds, tiazofurin (**1**) and the known¹² analogue **2**, are presented in Table 1.

Remarkably, the analogue 3 exhibits sub-micromolar cytotoxicity against all malignant cells, with IC_{50} values ranging from 0.052 to 0.28 μ M. Additionally, this compound is significantly more active than the corresponding acetamido derivative 2, as well as tiazofurin itself, but was devoid of any cytotoxicity against the normal foetal lung fibroblasts MRC-5. The most pronounced antiproliferative activity of compound 3 was found to be against the K562 cells, being ca. 100-fold more potent than tiazofurin. Moreover, compound 3

was approximately 2-fold more active than the acetamido derivative 2 against the K562 cell line. Tiazofurin was the most potent compound towards the human Jurkat T cell line and was over 3-fold more potent than the acetamido derivative 2. Analogue 3 demonstrated a 2- and 7-fold greater cytotoxicity in the same cell line when compared to 1 and 2, respectively. As reported in our previous paper, the 3'-acetamido derivative 2 as well as tiazofurin showed equal and potent antiproliferative activities towards the colon adenocarcinoma HT-29 cells. 12 The title compound 3 exhibited even more pronounced cytotoxicity against this cell line, being approximately 27-fold more active with respect to both parent compounds 1 and 2. The analogue 3 also inhibited the growth of HeLa cells being 17-fold more efficient with respect to tiazofurin, while the 3'-acetamido derivative 2 was completely inactive against this malignant cell line. These results agree well with our previous findings¹² that the introduction of 3'-functionalities into the tiazofurin sugar moiety, in spite of the changes to its original stereochemistry, may provide an access to analogues of improved antiproliferative effects towards selected neoplastic cells.

In conclusion, a new tiazofurin analogue, 2-(3-amino-3-deoxy-β-D-xylofuranosyl)thiazole-4-carboxamide (3), was synthesized starting from p-glucose and evaluated for its in vitro antiproliferative activity against a panel of human tumour cell lines. Compound 3 exhibited the most powerful cytotoxicity against K562 cells, being approximately 100-fold more potent than tiazofurin. To the best of our knowledge, none of tiazofurin analogues were hitherto reported to exhibit such a potent antileukaemic activity. This analogue was also active against Jurkat, HT-29 and HeLa malignant cells, with respective IC₅₀ values being ca. 2-, 27- and 17-fold lower than those observed for tiazofurin, but did not exhibit any cytotoxicity towards normal foetal lung MRC-5 cells. Based upon these results, we believe that the analogue 3 may serve as an important lead in the synthesis of more potent and selective antitumour agents derived from the parent compound 1.

Acknowledgments

Financial support from the Ministry of Science and Environment Protection of the Republic of Serbia (Project No. 142005) is gratefully acknowledged.

References and notes

- Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R. K. J. Med. Chem. 1977, 20, 256.
- For recent reviews on inhibition of IMPDH and guanine nucleotide synthesis, see: (a) Pankiewicz, K. W.; Patterson, S. E.; Black, P. L.; Jayaram, H. N.; Risal, D.; Goldstein, B. M.; Stuyver, L. J.; Schinazi, R. F. Curr. Med. Chem. 2004, 11, 887; (b) Christopherson, R. I.; Lyons, S. D.; Wilson, P. K. Acc. Chem. Res. 2002, 35, 961; (c) Pankiewicz, K. W. Exp. Opin. Ther. Patents 1999, 9, 55; (d) Hedstrom, L. Curr. Med. Chem. 1999, 6, 545; (e) Jayaram, H. N.; Grusch, M.; Cooney, D. A.; Krupitza, G. Curr. Med. Chem. 1999, 6, 561; (f) Franchetti, P.; Grifantini, M. Curr. Med. Chem. 1999, 6, 599.
- Robins, R. K.; Srivastava, P. C.; Narayanan, V. L.; Plowman, L.; Paull, K. D. J. Med. Chem. 1982, 25, 107.
- For recent reviews on biochemical and clinical impact of tiazofurin, see: (a) Weber, G.; Shen, F.; Orbán, T. I.; Kökeny, S.; Olah, E. Adv. Enzyme Regul. 2003, 43, 47; (b) Grifantini, M. Curr. Opin. Invest. Drugs 2000, 1, 257.
- 5. The results of in vitro cytotoxicity testing of tiazofurin against a panel of 60 human tumour cells are available at: http://dtp.nci.nih.gov/dtpstandard/servlet/MeanGraph-Summary?searchtype=NSC&outputformat=html&searchlist= 286193.
- (a) Malek, K.; Boosalis, M.; Waraska, K.; Mitchell, B. S.; Wright, D. G. Leukemia Res. 2004, 28, 1125; (b) Jayaram, H. N.; Lapis, E.; Tricot, G. J.; Kneebone, P.; Paulik, E.; Zhen, W.; Engeler, G. P.; Hoffman, R.; Weber, G. Int. J. Cancer 1992, 51, 182; (c) Tricot, G. J.; Jayaram, H. N.; Lapis, E.; Natsumeda, Y.; Nichols, C. R.; Kneebone, P.; Heerema, N.; Weber, G.; Hoffman, R. Cancer Res. 1989, 49, 3696.
- (a) Wright, D. G.; Boosalis, M. S.; Waraska, K.; Oshry, L. J.; Weintraub, L. R.; Vosburgh, E. *Anticancer Res.* 1996, 16, 3349; (b) Tricot, G.; Weber, G. *Anticancer Res.* 1996, 16, 3341.
- For recent syntheses of tiazofurin analogues with modified sugar moieties, see: (a) Merino, P.; Tejero, T.; Unzurrunzaga, F. J.; Franco, S.; Chiacchio, U.; Saita, M. G.; Iannazzo, D.; Pipernoc, A.; Romeo, G. Tetrahedron: Asymmetry 2005, 16, 3865; (b) Chiacchio, U.; Rescifina, A.; Saita, M. G.; Iannazzo, D.; Romeo, G.; Mates, J. A.; Tejero, T.; Merino, P. J. Org. Chem. 2005, 70, 8991; (c) Chun, M. W.; Kim, M. J.; Shin, J. H.; Jeong, L. S. Nucleosides Nucleotides Nucleic Acids 2005, 24, 975; (d) Nair, V.; Wenzel, T. ARKIVOC 2004, 14, 128; (e) Liang, C. W.; Kim, M. J.; Jeong, L. S.; Chun, M. W. Nucleosides

- Nucleotides Nucleic Acids 2003, 22, 2039; (f) Cappellacci, L.; Barboni, G.; Franchetti, P.; Martini, C.; Jayaram, H. N.; Grifantini, M. Nucleosides Nucleotides Nucleic Acids 2003, 22, 869; (g) Franchetti, P. S.; Marchetti, S.; Cappellacci, L.; Jayaram, H. M.; Yalowitz, J. A.; Goldstein, B. M.; Barascut, J.-L.; Dukhan, D.; Imbach, J.-L.; Grifantini, M. J. Med. Chem. 2000, 43, 1264; (h) Qu, F.; Hong, J. H.; Du, J.; Newton, M. G.; Chu, C. K. Tetrahedron 1999, 55, 9073; (i) Zhang, H. Y.; Yu, H. W.; Ma, L. T.; Min, J. M.; Zhang, L. H. Tetrahedron: Asymmetry 1998, 9, 141.
- 9. For example, the C-3 epimer of 3 has been evaluated in vitro for its ability to inhibit the growth of human 143B Osteosarcoma cells, but found to be completely inactive (see Ref. 8e).
- Popsavin, M.; Torović, Lj.; Spaić, S.; Stankov, S.; Popsavin, V. Tetrahedron Lett. 2000, 41, 5737.
- Popsavin, M.; Torović, Lj.; Spaić, S.; Stankov, S.; Kapor, A.; Tomić, Z.; Popsavin, V. Tetrahedron 2002, 58, 569.
- Popsavin, M.; Torović, Lj.; Kojić, V.; Bogdanović, G.; Spaić, S.; Popsavin, V. Bioorg. Med. Chem. Lett. 2003, 13, 3167.
- Popsavin, M.; Torović, Lj.; Kojić, V.; Bogdanović, G.; Popsavin, V. Tetrahedron Lett. 2004, 45, 7125.
- Popsavin, M.; Torović, Lj.; Svirčev, M.; Kojić, V.; Bogdanović, G.; Popsavin, V. Bioorg. Med. Chem. Lett. 2006, 16, 2773.
- (a) Suhadolnik, R. J. Nucleoside Antibiotics; Wiley-Interscience: New York, 1970;
 (b) Suhadolnik, R. J. Nucleosides as Biological Probes; Wiley-Interscience: New York, 1979
- 16. Balzarini, J. Pharm. World Sci. 1994, 16, 113.
- 17. Popsavin, M.; Popsavin, V.; Vukojević, N.; Csanádi, J.; Miljković, D. *Carbohydr. Res.* **1994**, *260*, 145.
- 18. Banaszek, A.; Janisz, B. Tetrahedron: Asymmetry 2000, 11, 4693.
- 19. Secrist, J. A., III; Logue, M. W. J. Org. Chem. 1972, 37, 335
- Aguilar, E.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 2773.
- 21. Selected spectral data for 3: 1 H NMR (250 MHz, methanol- d_4): δ 3.61 (dd, 1H, J = 5.2, J = 6.4 Hz, H-3'), 3.81 (dd, 1H, $J_{4',5'a} = 4.3$, $J_{5'a,5'b} = 12.2$ Hz, H-5'a), 3.89 (dd, 1H, $J_{4',5'b} = 4.3$ Hz, H-5'b), 4.22–4.38 (m, 2H, H-2' and H-4'), 4.95 (d, 1H, $J_{1',2'} = 5.5$ Hz, H-1'), 8.21 (s, 1 H, H-5); 13 C NMR (62.9 MHz, methanol- d_4): δ 61.01 (C-3'), 61.70 (C-5'), 81.35 (C-4'), 82.98 (C-2'), 83.91 (C-1'), 125.91 (C-5), 150.92 (C-4), 165.62 (C-2), 172.33 (CONH₂).
- Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer. Res. 1988, 48, 4827.